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Physics 401 Spring 2021 Prof. Anlage 
Course Review 

 
Early Quantum Mechanics   
JJ Thomson charge-to-mass measurement in E, B fields: 𝑞𝑞/𝑚𝑚 = 𝑣𝑣

𝑅𝑅𝑅𝑅
.  Millikan oil droplet 

experiment: revealed the quantization of electric charge. 
Blackbody radiation, Stefan-Boltzmann law: 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜎𝜎𝑇𝑇4, 𝜎𝜎 = 5.6703 × 10−8 𝑊𝑊

𝑚𝑚2𝐾𝐾4
.  

Wien displacement law says that 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 = 2.898 × 10−3𝑚𝑚 − 𝐾𝐾.   
Radiation power per unit area related to the energy density of a blackbody: 𝑅𝑅(𝜆𝜆) =
𝑐𝑐
4
𝜌𝜌(𝜆𝜆).   

Rayleigh-Jeans (classical equipartition argument) law 𝜌𝜌(𝜆𝜆) = 8𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇/𝜆𝜆4 leads to the 
‘ultraviolet catastrophe’.   
Planck blackbody radiation (treat the atoms as having discrete energy states, and the light 
as having energy 𝐸𝐸 = ℎ𝑓𝑓): 𝜌𝜌(𝜆𝜆) = 8𝜋𝜋ℎ𝑐𝑐/𝜆𝜆5

𝑒𝑒ℎ𝑐𝑐/𝜆𝜆𝑘𝑘𝐵𝐵𝑇𝑇−1
, ℎ = 6.626 × 10−34𝐽𝐽 − 𝑠𝑠.  

Photoelectric effect: Photoelectric effect and the concept of light as a particle (photon 
with 𝐸𝐸 = ℎ𝑓𝑓): ℎ𝑓𝑓 = 𝑒𝑒𝑒𝑒0 + 𝜙𝜙.  Photon collides with one electron and transfers all of its 
energy, −𝑉𝑉0 is the stopping potential. 
X-ray production by Bremsstrahlung with cutoff 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 1240

𝑉𝑉
 𝑛𝑛𝑛𝑛 (Duane-Hunt Rule), 

explained by Einstein as inverse photoemission with 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = ℎ𝑐𝑐
𝑒𝑒𝑒𝑒

.  Sharp emission lines 
arise from quantized energy levels in the ‘core shells’ of atoms. 
Bragg reflection of x-rays from layers of atoms in crystals: 𝑛𝑛𝑛𝑛 = 2𝑑𝑑 sin𝜃𝜃, where 𝑛𝑛 =
1, 2, 3, … , 𝑑𝑑 is the spacing between the parallel layers. 
Rutherford scattering (Phys 410) suggested that positive charge is concentrated in a very 
small volume – the nuclear model of the atom. 
Empirical rule for wavelengths of light emission from hydrogen 1

𝜆𝜆𝑚𝑚𝑚𝑚
= 𝑅𝑅 � 1

𝑚𝑚2 −
1
𝑛𝑛2
�, 

Rydberg constant 𝑅𝑅 = 𝑅𝑅𝐻𝐻 = 1.096776 × 107  1
𝑚𝑚

 for Hydrogen.   
Bohr model of the hydrogen atom (assumes stationary states, light comes from 
transitions between stationary states, electron angular momentum in circular orbits is 
quantized):  �𝐿𝐿�⃗ � = |𝑟𝑟 × 𝑚𝑚𝑣𝑣| = 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛ℏ, with 𝑛𝑛 = 1, 2, 3, …,   Radius of circular orbits: 

𝑟𝑟𝑛𝑛 = 𝑛𝑛2𝑎𝑎0
𝑍𝑍

 with 𝑎𝑎0 = 4𝜋𝜋𝜀𝜀0ℏ2

𝑚𝑚𝑒𝑒2
= 0.529 Å,  Total energy of Hydrogen atom: 𝐸𝐸𝑛𝑛 = −𝐸𝐸0

𝑍𝑍2

𝑛𝑛2
, 

with 𝐸𝐸0 = 𝑚𝑚𝑐𝑐2�𝑒𝑒2/4𝜋𝜋𝜀𝜀0�
2 

2 (ℏ𝑐𝑐)2
= 𝑚𝑚𝑐𝑐2 

2 
𝛼𝛼2 = 13.6 𝑒𝑒𝑒𝑒, 𝛼𝛼 = 𝑒𝑒2/4𝜋𝜋𝜀𝜀0

ℏ𝑐𝑐
≅ 1

137
 is called the ‘fine 

structure constant’.  Explains the Hydrogen atom emission spectrum but not multi-
electron atoms. 
Davisson-Germer experiment shows that matter (electrons) diffract from periodic 
structures (Ni atoms on a surface) like waves.  It is clear that matter has a strong wave-
like character when measured under appropriate conditions. 
deBroglie relations: 𝑓𝑓 = 𝐸𝐸

ℎ
 and 𝜆𝜆𝑑𝑑𝑑𝑑 = ℎ

𝑝𝑝
.  deBroglie proposed the wavelength of matter 

waves as 𝜆𝜆𝑑𝑑𝑑𝑑 = ℎ/𝑝𝑝, where 𝑝𝑝 is the linear momentum.  Classical physics should be 
recovered in the short-𝜆𝜆𝑑𝑑𝑑𝑑  limit – the Correspondence Principle. 
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Dispersion relation for a particle: ℏ𝜔𝜔 = ℏ2𝑘𝑘2

2𝑚𝑚
+ 𝑉𝑉(𝑥𝑥, 𝑡𝑡).  

The time-dependent Schrodinger equation: − ℏ2

2𝑚𝑚
𝜕𝜕2Ψ(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝑉𝑉(𝑥𝑥, 𝑡𝑡)Ψ(𝑥𝑥, 𝑡𝑡) = 𝑖𝑖ℏ 𝜕𝜕Ψ(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

;  
Separation of variables (assuming 𝑉𝑉(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉(𝑥𝑥) only) leads to Ψ(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓(𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖/ℏ 
(a property of stationary states); 
Time-independent Schrodinger equation:  − ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ 𝑉𝑉(𝑥𝑥) 𝜓𝜓(𝑥𝑥) = 𝐸𝐸𝐸𝐸(𝑥𝑥);  
The wavefunction 𝚿𝚿(𝒙𝒙, 𝒕𝒕) is complex in general and cannot be measured.  Born 
interpretation of the wave function in terms of a probability density 𝑃𝑃(𝑥𝑥, 𝑡𝑡) =
Ψ∗(𝑥𝑥, 𝑡𝑡)Ψ(𝑥𝑥, 𝑡𝑡); Probability current:  𝐽𝐽(𝑥𝑥, 𝑡𝑡) = 𝑖𝑖ℏ

2𝑚𝑚
�Ψ𝜕𝜕Ψ∗

𝜕𝜕𝜕𝜕
− Ψ∗ 𝜕𝜕Ψ

𝜕𝜕𝜕𝜕
�; Normalization 

condition: ∫ |Ψ(𝑥𝑥, 𝑡𝑡)|2+∞
−∞ 𝑑𝑑𝑑𝑑 = 1 and  ∫ |𝜓𝜓(𝑥𝑥)|2+∞

−∞ 𝑑𝑑𝑑𝑑 = 1.   
General solution to TDSE: Ψ(𝑥𝑥, 𝑡𝑡) = ∑ 𝑐𝑐𝑛𝑛∞

𝑛𝑛=1 𝜓𝜓𝑛𝑛(𝑥𝑥)𝑒𝑒−𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡/ℏ;  ∑ |𝑐𝑐𝑛𝑛|2 = 1∞
𝑛𝑛=1 ;  〈ℋ� 〉 =

∑ |𝑐𝑐𝑛𝑛|2𝐸𝐸𝑛𝑛∞
𝑛𝑛=1 ;   

Expectation values: 〈𝑥𝑥〉 = ∫ Ψ∗(𝑥𝑥, 𝑡𝑡) 𝑥𝑥 Ψ(𝑥𝑥, 𝑡𝑡)∞
−∞  𝑑𝑑𝑑𝑑 , and for any function of position: 

〈𝑓𝑓(𝑥𝑥)〉 = ∫ Ψ∗(𝑥𝑥, 𝑡𝑡) 𝑓𝑓(𝑥𝑥) Ψ(𝑥𝑥, 𝑡𝑡)∞
−∞  𝑑𝑑𝑑𝑑 

Linear momentum operator: 𝑝̂𝑝 = −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

 , Hamiltonian operator: ℋ� = 𝑝𝑝�2

2𝑚𝑚
+ 𝑉𝑉(𝑥𝑥), the 

time independent Schrodinger equation written as an operator equation: ℋ�ψ(𝑥𝑥) =
𝐸𝐸 ψ(𝑥𝑥). 
Definition of uncertainty: 𝜎𝜎 = �〈𝑥𝑥2〉 − 〈𝑥𝑥〉2;   The Uncertainty Principle: 𝜎𝜎𝑥𝑥  𝜎𝜎𝑝𝑝𝑥𝑥 ≥ ℏ/2;  
One example of Ehrenfest’s theorem:  𝑑𝑑〈𝑥𝑥〉

𝑑𝑑𝑑𝑑
= 1

𝑚𝑚
〈𝑝𝑝〉; Expectation values obey classical 

laws of motion! 
Infinite square well of width 𝑎𝑎 for a particle of mass 𝑚𝑚: Energy eigenvalues 𝐸𝐸𝑛𝑛 =
ℏ2𝑘𝑘𝑛𝑛2

2𝑚𝑚
= 𝑛𝑛2 𝜋𝜋2ℏ2

2𝑚𝑚𝑎𝑎2
 with 𝑛𝑛 = 1, 2, 3, …, and eigenfunctions 𝜓𝜓𝑛𝑛(𝑥𝑥) = �2/𝑎𝑎  sin 𝑘𝑘𝑛𝑛𝑥𝑥, with 

𝑘𝑘𝑛𝑛 = 𝑛𝑛𝑛𝑛/𝑎𝑎; These eigenfunctions form a complete ortho-normal set on the interval 
[0,𝑎𝑎]: ∫ 𝜓𝜓𝑚𝑚∗(𝑥𝑥)𝜓𝜓𝑛𝑛(𝑥𝑥)+∞

−∞ 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑛𝑛,𝑚𝑚;  Use this to find the above expansion coefficients: 
𝑐𝑐𝑚𝑚 = ∫ 𝜓𝜓𝑚𝑚∗(𝑥𝑥)Ψ(𝑥𝑥, 0)+∞

−∞ 𝑑𝑑𝑑𝑑, for 𝑚𝑚 = 1, 2, 3, …. 

Harmonic oscillator: 𝑉𝑉(𝑥𝑥) = 1
2
𝑚𝑚𝜔𝜔2𝑥𝑥2, leading to the TISE: − ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+
1
2
𝑚𝑚𝜔𝜔2𝑥𝑥2𝜓𝜓(𝑥𝑥)  = 𝐸𝐸𝐸𝐸(𝑥𝑥); Raising and Lowering operators: 𝑎𝑎�+ = 1

√2𝑚𝑚ℏ𝜔𝜔
(−𝑖𝑖𝑝̂𝑝 + 𝑚𝑚𝑚𝑚𝑥𝑥�); 

𝑎𝑎�− = 1
√2𝑚𝑚ℏ𝜔𝜔

(+𝑖𝑖𝑝̂𝑝 + 𝑚𝑚𝑚𝑚𝑥𝑥�);  Commutator: [𝒙𝒙�,𝒑𝒑�] = 𝒊𝒊ℏ; 𝑎𝑎�−𝑎𝑎�+ = 1
ℏ𝜔𝜔
ℋ� + 1

2
;  

Moving up and down the ladder of states: 𝑎𝑎�+𝜓𝜓𝑛𝑛(𝑥𝑥) = √𝑛𝑛 + 1 𝜓𝜓𝑛𝑛+1(𝑥𝑥); 𝑎𝑎�−𝜓𝜓𝑛𝑛(𝑥𝑥) =
√𝑛𝑛 𝜓𝜓𝑛𝑛−1(𝑥𝑥);  
Harmonic oscillator wavefunctions: 𝜓𝜓𝑛𝑛(𝑥𝑥) = 1

√𝑛𝑛!
(𝑎𝑎�+)𝑛𝑛𝜓𝜓0(𝑥𝑥); 𝜓𝜓𝑛𝑛(𝑥𝑥) =

�𝑚𝑚𝑚𝑚
𝜋𝜋ℏ
�
1
4 1
√2𝑛𝑛𝑛𝑛!

 𝐻𝐻𝑛𝑛 ��
𝑚𝑚𝑚𝑚
ℏ
𝑥𝑥�𝑒𝑒−

𝑚𝑚𝜔𝜔2𝑥𝑥2

2ℏ   𝐸𝐸𝑛𝑛 = �𝑛𝑛 + 1
2
� ℏ𝜔𝜔, where 𝑛𝑛 = 0, 1, 2, 3, …, and 𝐻𝐻𝑛𝑛(𝑥𝑥) 

are the Hermite polynomials.  The number operator: 𝑁𝑁�𝜓𝜓𝑛𝑛 = 𝑎𝑎�+𝑎𝑎�−𝜓𝜓𝑛𝑛 = 𝑛𝑛𝜓𝜓𝑛𝑛 ;   
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Expressing x and 𝑝̂𝑝 in terms of the raising and lowering operators: 𝑥𝑥� = � ℏ
2𝑚𝑚𝑚𝑚

(𝑎𝑎�+ + 𝑎𝑎�−); 

𝑝̂𝑝 = 𝑖𝑖�ℏ𝑚𝑚𝑚𝑚
2

(𝑎𝑎�+ − 𝑎𝑎�−).  This is a good shortcut for finding 〈𝑥𝑥〉, 〈𝑝̂𝑝〉, etc. 

The classical turning points are inflection points in 𝜓𝜓(𝑥𝑥).   
Parity operator: Π� 𝜓𝜓(𝑥𝑥) = 𝜓𝜓(−𝑥𝑥).  Problems with symmetric potential have only even 
and odd parity wavefunction solutions.  Parity alternates going up the energy ladder of 
states. 

Free particle: Ψ(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑖𝑖�𝑘𝑘𝑘𝑘−ℏ𝑘𝑘2𝑡𝑡/2𝑚𝑚�, with 𝑘𝑘 = ±�2𝑚𝑚𝑚𝑚
ℏ2

; Ψ(𝑥𝑥, 𝑡𝑡) =
1

√2𝜋𝜋
∫ 𝜑𝜑(𝑘𝑘)∞
−∞ 𝑒𝑒𝑖𝑖�𝑘𝑘𝑘𝑘−ℏ𝑘𝑘2𝑡𝑡/2𝑚𝑚�𝑑𝑑𝑑𝑑; Ψ(𝑥𝑥, 0) = 1

√2𝜋𝜋
∫ 𝜑𝜑(𝑘𝑘)∞
−∞ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑; 𝜑𝜑(𝑘𝑘) =

1
√2𝜋𝜋

∫ Ψ(𝑥𝑥, 0)∞
−∞ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑; 𝑣𝑣𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜔𝜔

𝑘𝑘
= ℏ𝑘𝑘

2𝑚𝑚
= 𝑝𝑝

2𝑚𝑚
= 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/2; 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= ℏ𝑘𝑘

𝑚𝑚
=

𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 .   
Delta function potential well: 𝑉𝑉(𝑥𝑥) = −𝛼𝛼 𝛿𝛿(𝑥𝑥), with 𝛼𝛼 > 0; 𝑑𝑑𝜓𝜓

𝑑𝑑𝑑𝑑
�
𝑥𝑥=0+

− 𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑
�
𝑥𝑥=0−

=

− 2𝑚𝑚𝑚𝑚
ℏ2

𝜓𝜓(0); single bound state (𝐸𝐸 < 0): 𝜓𝜓(𝑥𝑥) = √𝑚𝑚𝑚𝑚
ℏ
𝑒𝑒−𝑚𝑚𝑚𝑚|𝑥𝑥|/ℏ2 with 𝐸𝐸 = −𝑚𝑚𝛼𝛼2

2ℏ2
< 0.  

Scattering states (𝐸𝐸 > 0): 𝜓𝜓𝐼𝐼(𝑥𝑥) = 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  for region I (𝑥𝑥 < 0), and 𝜓𝜓𝐼𝐼𝐼𝐼(𝑥𝑥) =
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑒𝑒−𝑖𝑖𝑘𝑘𝑘𝑘  for region II (𝑥𝑥 > 0), where 𝑘𝑘2 = + 2𝑚𝑚𝑚𝑚

ℏ2
> 0. 𝑅𝑅 = |𝐵𝐵/𝐴𝐴|2 = 𝛽𝛽2

1+𝛽𝛽2
=

1

1+ 2ℏ2

𝑚𝑚𝛼𝛼2
𝐸𝐸
, 𝑇𝑇 = |𝐹𝐹/𝐴𝐴|2 = 1/𝛽𝛽2

1+1/𝛽𝛽2
=

2ℏ2

𝑚𝑚𝛼𝛼2
𝐸𝐸

1+ 2ℏ2

𝑚𝑚𝛼𝛼2
𝐸𝐸
,   

Scattering matrix treatment: express outgoing wave amplitudes in terms of incoming 

wave amplitudes: �𝐵𝐵𝐹𝐹� = �𝑆𝑆11 𝑆𝑆12
𝑆𝑆21 𝑆𝑆22

� �𝐴𝐴𝐺𝐺� = 𝑆𝑆̿ �𝐴𝐴𝐺𝐺�.   

Finite square well: 𝑉𝑉(𝑥𝑥) = � −𝑉𝑉0 for − 𝑎𝑎 < 𝑥𝑥 < 𝑎𝑎
0     for 𝑥𝑥 < −𝑎𝑎 and 𝑥𝑥 > 𝑎𝑎

.  Finite square well of width 2𝑎𝑎 

bound states given by solutions to the transcendental equation: tan(𝑧𝑧) = ��𝑧𝑧0
𝑧𝑧
�
2
− 1 

with 𝑧𝑧 = 𝑎𝑎
ℏ
�2𝑚𝑚(𝐸𝐸 + 𝑉𝑉0) and 𝑧𝑧0 = 𝑎𝑎

ℏ �2𝑚𝑚𝑉𝑉0 (even parity solutions).  There is always at 
least one solution! 

Step potential 𝑉𝑉(𝑥𝑥) = � 0    for  𝑥𝑥 < 0
𝑉𝑉0     for  𝑥𝑥 > 0 has reflection probability 𝑅𝑅 = �𝑘𝑘1−𝑘𝑘2

𝑘𝑘1+𝑘𝑘2
�
2
, and 

transmission probability 𝑇𝑇 = 4 𝑘𝑘1 𝑘𝑘2
(𝑘𝑘1+𝑘𝑘2)2

, where 𝑘𝑘1 = √2𝑚𝑚𝑚𝑚/ℏ and 𝑘𝑘2 = �2𝑚𝑚(𝐸𝐸 − 𝑉𝑉0)/ℏ. 

Tunneling probability through a barrier 𝑇𝑇 = �1 + sinh2(𝛼𝛼𝛼𝛼)

4 𝐸𝐸𝑉𝑉0
 �1− 𝐸𝐸𝑉𝑉0

�
�
−1

≈ 16  𝐸𝐸
𝑉𝑉0

 �1−

 𝐸𝐸
𝑉𝑉0
� 𝑒𝑒−2𝛼𝛼𝛼𝛼 , where  𝑎𝑎 is the barrier width, and  𝛼𝛼 = �2𝑚𝑚(𝑉𝑉0 − 𝐸𝐸)/ℏ. 

 
Hilbert Space:  
Originally defined as a function space: inner product or “projection” 〈𝑓𝑓|𝑔𝑔〉 =
∫ 𝑓𝑓∗(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑∞
−∞   〈𝑓𝑓|𝑔𝑔〉∗ = 〈𝑔𝑔|𝑓𝑓〉     
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A set of functions {𝑓𝑓𝑛𝑛} is orthonormal if they satisfy 〈𝑓𝑓𝑚𝑚|𝑓𝑓𝑛𝑛〉 = ∫ 𝑓𝑓𝑚𝑚∗(𝑥𝑥)𝑓𝑓𝑛𝑛(𝑥𝑥)𝑑𝑑𝑑𝑑∞
−∞ =

𝛿𝛿𝑚𝑚,𝑛𝑛 with this one can express any function in Hilbert space: 𝑓𝑓(𝑥𝑥) = ∑ 𝑐𝑐𝑛𝑛 ∞
𝑛𝑛=1 𝑓𝑓𝑛𝑛(𝑥𝑥).   

 
Hermitian conjugate of an operator: 〈𝑓𝑓|𝑄𝑄�𝑔𝑔〉 = 〈𝑄𝑄�+𝑓𝑓|𝑔𝑔〉.  For a Hermitian operator 𝑄𝑄�: 
〈𝜓𝜓|𝑄𝑄�𝜓𝜓〉 = 〈𝑄𝑄�𝜓𝜓|𝜓𝜓〉.  Operators can operate on kets or bras. 
 
The momentum operator eigenfunction as expressed in real space.  𝑝̂𝑝𝑓𝑓𝑝𝑝(𝑥𝑥) = 𝑝𝑝𝑓𝑓𝑝𝑝(𝑥𝑥) 
yields 𝑓𝑓𝑝𝑝(𝑥𝑥) = 1

√2𝜋𝜋ℏ
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖/ℏ and Dirac orthogonality 〈𝑓𝑓𝑝𝑝′|𝑓𝑓𝑝𝑝〉 = 𝛿𝛿(𝑝𝑝 − 𝑝𝑝′).   

The position operator eigenfunction in position space: 𝑔𝑔𝑦𝑦(𝑥𝑥) = 𝛿𝛿(𝑥𝑥 − 𝑦𝑦) 
Generalized Statistical Interpretation: 
Operator with a discrete spectrum: 𝑄𝑄�𝑓𝑓𝑛𝑛 = q𝑛𝑛𝑓𝑓𝑛𝑛 , in state |Ψ⟩ the probability of measuring 
q𝑛𝑛 is |〈𝑓𝑓𝑛𝑛|Ψ〉|2 and 〈𝑄𝑄〉 = ∑ |〈𝑓𝑓𝑛𝑛|Ψ〉|2q𝑛𝑛𝑛𝑛 .  Collapse of the wavefunction: measurement 
“projects out” an eigenstate of the 𝑄𝑄� operator, and |Ψ⟩  collapses to eigenfunction 𝑓𝑓𝑛𝑛. 

�𝐴̂𝐴,𝐵𝐵�� = 𝐴̂𝐴𝐵𝐵� − 𝐵𝐵�𝐴̂𝐴 = � 0     Compatible
≠ 0    Incompatible  𝜎𝜎𝐴𝐴2 𝜎𝜎𝐵𝐵2 ≥ � 1

2𝑖𝑖
 〈�𝐴̂𝐴,𝐵𝐵��〉�

2
 with 𝜎𝜎𝐴𝐴2 = 〈𝐴̂𝐴2〉 −

〈𝐴̂𝐴〉2.   
Generalized Ehrenfest theorem: 𝑑𝑑

𝑑𝑑𝑑𝑑
〈𝑄𝑄�〉 = 𝑖𝑖

ℏ
〈�ℋ� ,𝑄𝑄��〉 + 〈𝜕𝜕𝑄𝑄�

𝜕𝜕𝜕𝜕
〉 

Ψ(𝑥𝑥, 𝑡𝑡) = ⟨𝑥𝑥|𝑆𝑆(𝑡𝑡)⟩, Φ(𝑝𝑝, 𝑡𝑡) = ⟨𝑝𝑝|𝑆𝑆(𝑡𝑡)⟩ 
Φ(𝑝𝑝, 𝑡𝑡) = 1

√2𝜋𝜋ℏ
∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖/ℏ Ψ(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑑𝑑∞
−∞  and Ψ(𝑥𝑥, 𝑡𝑡) = 1

√2𝜋𝜋ℏ
∫ 𝑒𝑒+𝑖𝑖𝑖𝑖𝑖𝑖/ℏ Φ(𝑝𝑝, 𝑡𝑡) 𝑑𝑑𝑑𝑑∞
−∞  

Orthonormal basis |𝑒𝑒𝑛𝑛⟩, ⟨𝑒𝑒𝑚𝑚|𝑒𝑒𝑛𝑛⟩ = 𝛿𝛿𝑛𝑛,𝑚𝑚 Operator as a set of matrix elements: 𝑄𝑄𝑚𝑚𝑚𝑚 ≡
⟨𝑒𝑒𝑚𝑚|𝑄𝑄�|𝑒𝑒𝑛𝑛�.   
Example of 2-level system: 𝑖𝑖ℏ 𝑑𝑑

𝑑𝑑𝑑𝑑
|𝑆𝑆(𝑡𝑡)⟩  = ℋ� |𝑆𝑆(𝑡𝑡)⟩, |𝑆𝑆(𝑡𝑡)⟩ = �𝑎𝑎(𝑡𝑡)

𝑏𝑏(𝑡𝑡)�, 𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑎𝑎(𝑡𝑡)
𝑏𝑏(𝑡𝑡)�  =

� 𝜖𝜖 −∆
−∆ 𝜖𝜖 � �

𝑎𝑎(𝑡𝑡)
𝑏𝑏(𝑡𝑡)�.  TISE: ℋ� |𝑠𝑠⟩ = 𝐸𝐸|𝑠𝑠⟩, with 𝐸𝐸 = 𝜖𝜖 + ∆ with |𝑠𝑠−⟩ = 1

√2
� 1
−1�; and 𝐸𝐸 =

𝜖𝜖 − ∆ with |𝑠𝑠+⟩ = 1
√2
�1

1�.  ⟨𝑠𝑠+|𝑠𝑠+⟩ = ⟨𝑠𝑠−|𝑠𝑠−⟩ = 1 and ⟨𝑠𝑠+|𝑠𝑠−⟩ = ⟨𝑠𝑠−|𝑠𝑠+⟩ = 0.   

Definition of bra: ⟨𝑓𝑓|⋯ = ∫ 𝑓𝑓∗(𝑥𝑥)⋯𝑑𝑑𝑑𝑑  |𝛽𝛽⟩ = �

𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
⋮

� and ⟨𝛽𝛽| = (𝑏𝑏1∗ 𝑏𝑏2∗ 𝑏𝑏3∗ ⋯) so 

⟨𝛼𝛼|𝛽𝛽⟩ = 𝑎𝑎1∗𝑏𝑏1 + 𝑎𝑎2∗𝑏𝑏2 + 𝑎𝑎3∗𝑏𝑏3 + ⋯    
Projection operator: 𝑃𝑃�𝛼𝛼 = |𝛼𝛼⟩⟨𝛼𝛼|   
Completeness: 1� = ∑ |𝑒𝑒𝑛𝑛⟩⟨𝑒𝑒𝑛𝑛|∞

𝑛𝑛=1  (discrete basis), 1� = ∫|𝑒𝑒𝑧𝑧⟩⟨𝑒𝑒𝑧𝑧|𝑑𝑑𝑑𝑑 (continuous basis).  
General state |𝑆𝑆(𝑡𝑡)⟩ = ∫⟨𝑥𝑥|𝑆𝑆(𝑡𝑡)⟩ |𝑥𝑥⟩ 𝑑𝑑𝑑𝑑 = ∫Ψ(𝑥𝑥, 𝑡𝑡) |𝑥𝑥⟩ 𝑑𝑑𝑑𝑑, |𝑆𝑆(𝑡𝑡)⟩ =
∫⟨𝑝𝑝| 𝑆𝑆(𝑡𝑡)⟩ |𝑝𝑝⟩ 𝑑𝑑𝑑𝑑 = ∫Φ(𝑝𝑝, 𝑡𝑡) |𝑝𝑝⟩ 𝑑𝑑𝑑𝑑, |𝑆𝑆(𝑡𝑡)⟩ = ∑ ⟨𝑛𝑛|𝑆𝑆(𝑡𝑡)⟩∞

𝑛𝑛=1  |𝑛𝑛⟩ = ∑ c𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=1  |𝑛𝑛⟩ 

𝑥𝑥� → 𝑥𝑥 in position space and 𝑥𝑥� → 𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

 in momentum space; 𝑝̂𝑝 → −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

 in position space 
and 𝑝̂𝑝 → 𝑝𝑝 in momentum space. 
 
3D QM  Schrodinger equation 𝑖𝑖ℏ 𝜕𝜕Ψ(𝑟𝑟,𝑡𝑡)

𝜕𝜕𝜕𝜕
= ℋ�Ψ(𝑟𝑟, 𝑡𝑡)  Probability density: |Ψ(𝑟𝑟, 𝑡𝑡)|2 𝑑𝑑3𝑟𝑟 

is the probability of finding the particle within differential volume 𝑑𝑑3𝑟𝑟 of the location 𝑟𝑟 
in 3D space.  Normalization ∭|Ψ(𝑟𝑟, 𝑡𝑡)|2 𝑑𝑑3𝑟𝑟 = 1. 
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3D momentum operator: 𝑝̂𝑝 = −𝑖𝑖ℏ�𝚤𝚤̂ 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝚥𝚥̂ 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘� 𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝑖𝑖ℏ∇��⃗ .   

Separation of variables: Ψ(𝑟𝑟, 𝑡𝑡) = 𝜓𝜓(𝑟𝑟)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖/ℏ if 𝑉𝑉 = 𝑉𝑉(𝑟𝑟) only, independent of time.  
3D TISE:  −ℏ

2

2𝑚𝑚
∇2𝜓𝜓(𝑟𝑟) + V(𝑟𝑟)𝜓𝜓(𝑟𝑟) =  𝐸𝐸𝐸𝐸(𝑟𝑟) and Ψ(𝑟𝑟, 𝑡𝑡) = ∑ 𝑐𝑐𝑛𝑛 𝜓𝜓𝑛𝑛(𝑟𝑟)𝑛𝑛 𝑒𝑒−𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡/ℏ   

In spherical coordinates: −ℏ2

2𝑚𝑚
� 1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟2 𝜕𝜕𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙)

𝜕𝜕𝜕𝜕
�+ 1

𝑟𝑟2 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕
�sin 𝜃𝜃 𝜕𝜕𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙)

𝜕𝜕𝜕𝜕
�+

1
𝑟𝑟2 sin2 𝜃𝜃

�𝜕𝜕
2𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙)
𝜕𝜕𝜙𝜙2

��+ V(𝑟𝑟,𝜃𝜃,𝜙𝜙)𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙) =  𝐸𝐸 𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙)  Consider central forces only, 
such that 𝑉𝑉 = 𝑉𝑉(𝑟𝑟) only.  Separate variables as 𝜓𝜓(𝑟𝑟, 𝜃𝜃,𝜙𝜙) = 𝑅𝑅(𝑟𝑟)𝑌𝑌(𝜃𝜃,𝜙𝜙) to arrive at 
two new equations: Radial 𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑟𝑟2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� − 2𝑚𝑚𝑟𝑟2

ℏ2
[𝑉𝑉(𝑟𝑟)− 𝐸𝐸]𝑅𝑅 = ℓ(ℓ + 1)𝑅𝑅 and Angular 

� 1
sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜕𝜕
�sin𝜃𝜃 𝜕𝜕𝑌𝑌

𝜕𝜕𝜕𝜕
� + 1

sin2 𝜃𝜃
�𝜕𝜕

2𝑌𝑌
𝜕𝜕𝜙𝜙2

�� = −ℓ(ℓ + 1)𝑌𝑌.   

The TISE in sphericals can be regarded as: �𝑝𝑝𝑟𝑟
2

2𝑚𝑚
+ 𝑝𝑝⊥2

2𝑚𝑚
+ 𝑉𝑉(𝑟𝑟)�𝜓𝜓 = 𝐸𝐸𝐸𝐸, with 𝑝𝑝𝑟𝑟

2

2𝑚𝑚
=

−ℏ2

2𝑚𝑚
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟2 𝜕𝜕

𝜕𝜕𝜕𝜕
� for the radial kinetic energy operator, and 

𝑝𝑝⊥2

2𝑚𝑚
= �𝐿𝐿�⃗ �

2

2𝑚𝑚𝑟𝑟2
= −ℏ2

2𝑚𝑚
� 1
𝑟𝑟2 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜕𝜕
�sin𝜃𝜃 𝜕𝜕

𝜕𝜕𝜕𝜕
� + 1

𝑟𝑟2 sin2 𝜃𝜃
� 𝜕𝜕2

𝜕𝜕𝜙𝜙2
�� for the “angular momentum 

squared” operator.   

Solution to the angular equation: 𝑌𝑌ℓ𝑚𝑚(𝜃𝜃,𝜙𝜙) =  �2ℓ+1
4𝜋𝜋

 (ℓ−𝑚𝑚)!
(ℓ+𝑚𝑚)!

 𝑃𝑃ℓ𝑚𝑚(cos𝜃𝜃)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖.  Also note 

that ℓ ≥ 0, and |𝑚𝑚| ≤ ℓ.  The spherical harmonics are an orthonormal set of functions 
“on the sphere”: ∫ 𝑑𝑑𝑑𝑑2𝜋𝜋

0  ∫ 𝑑𝑑𝑑𝑑 sin 𝜃𝜃 𝜋𝜋
0 𝑌𝑌ℓ𝑚𝑚

∗(𝜃𝜃,𝜙𝜙)𝑌𝑌ℓ′𝑚𝑚′(𝜃𝜃,𝜙𝜙) = 𝛿𝛿ℓ,ℓ′ 𝛿𝛿𝑚𝑚,𝑚𝑚′ any express any 
function of angle 𝑓𝑓(𝜃𝜃,𝜙𝜙) = ∑ ∑ 𝑐𝑐ℓ,𝑚𝑚

ℓ
𝑚𝑚=−ℓ

∞
ℓ=0 𝑌𝑌ℓ𝑚𝑚(𝜃𝜃,𝜙𝜙).   

For the radial equation, define the effective potential 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) + ℏ2

2𝑚𝑚
ℓ(ℓ+1)
𝑟𝑟2

 that 
includes the “centrifugal term” that pushes the particle away from the force center. 
Infinite spherical well 𝑉𝑉(𝑟𝑟) = �0      𝑟𝑟 < 𝑎𝑎

∞     𝑟𝑟 ≥ 𝑎𝑎 𝜓𝜓𝑛𝑛ℓ𝑚𝑚(𝑟𝑟, 𝜃𝜃,𝜙𝜙) = 𝑅𝑅𝑛𝑛ℓ(𝑟𝑟) 𝑌𝑌ℓ𝑚𝑚(𝜃𝜃,𝜙𝜙) =
𝐴𝐴𝑛𝑛ℓ 𝑗𝑗ℓ(𝛽𝛽𝑛𝑛 ℓ𝑟𝑟/𝑎𝑎)𝑌𝑌ℓ𝑚𝑚(𝜃𝜃,𝜙𝜙), involving spherical Bessel functions where 𝑛𝑛 = 1, 2, 3, 4, … 
and ℓ = 0, 1, 2, 3, 4, … and 𝑚𝑚 ∈ {−ℓ,−ℓ + 1,−ℓ + 2, … , 0, … ,ℓ − 2,ℓ − 1,ℓ}.   
Hydrogen atom: 𝑉𝑉(𝑟𝑟) = − 𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
, radial Eq. − ℏ2

2𝑚𝑚
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑟𝑟2

+ �− 𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
+ ℏ2

2𝑚𝑚
ℓ(ℓ+1)
𝑟𝑟2

� 𝑢𝑢 = 𝐸𝐸𝐸𝐸, 

terminating the infinite series solution leads to 𝐸𝐸𝑛𝑛 = − � 𝑚𝑚
2ℏ2

 � 𝑒𝑒2

4𝜋𝜋𝜀𝜀0
�
2
�  1
𝑛𝑛2

, where 𝑛𝑛 =

1, 2, 3, …, 𝐸𝐸1 = −13.6 𝑒𝑒𝑒𝑒.  𝑎𝑎 = 4𝜋𝜋𝜀𝜀0ℏ2

𝑚𝑚𝑒𝑒2
= 0.529 × 10−10 𝑚𝑚, known as the Bohr radius.   

Full solution: 𝜓𝜓𝑛𝑛ℓ𝑚𝑚(𝑟𝑟,𝜃𝜃,𝜙𝜙) = �� 2
𝑛𝑛𝑛𝑛
�
3 (𝑛𝑛−ℓ−1)!
2𝑛𝑛 (𝑛𝑛+ℓ)!

�2𝑟𝑟
𝑛𝑛𝑛𝑛
�
ℓ
𝐿𝐿𝑛𝑛−ℓ−12ℓ+1 �2𝑟𝑟

𝑛𝑛𝑛𝑛
�  𝑒𝑒−𝑟𝑟/𝑛𝑛𝑎𝑎 𝑌𝑌ℓ𝑚𝑚(𝜃𝜃,𝜙𝜙) 

Degeneracy of the nth state of the hydrogen atom is given by 𝑑𝑑(𝑛𝑛) = ∑ (2ℓ+ 1 ) =𝑛𝑛−1
ℓ=0

𝑛𝑛2.  Transitions from higher energy states to lower states can be accomplished with 

photon emission with energy 𝐸𝐸𝛾𝛾 = −13.6 𝑒𝑒𝑒𝑒 � 1
𝑛𝑛𝑖𝑖
2 −

1
𝑛𝑛𝑓𝑓
2�, 1

𝜆𝜆
= 𝑅𝑅 � 1

𝑛𝑛𝑖𝑖
2 −

1
𝑛𝑛𝑓𝑓
2�, where 𝑅𝑅 is the 

Rydberg constant. 
Orbital Angular Momentum of the electron: 𝐿𝐿�⃗ = 𝑟𝑟 × 𝑝𝑝 classically.  Angular 
momentum operator components: 𝐿𝐿�𝑥𝑥 = 𝑦𝑦 𝑝̂𝑝𝑧𝑧 − 𝑧𝑧 𝑝̂𝑝𝑦𝑦, 𝐿𝐿�𝑦𝑦 = 𝑧𝑧 𝑝̂𝑝𝑥𝑥 − 𝑥𝑥 𝑝̂𝑝𝑧𝑧, 𝐿𝐿�𝑧𝑧 = 𝑥𝑥 𝑝̂𝑝𝑦𝑦 −
𝑦𝑦 𝑝̂𝑝𝑥𝑥.  None of the components commute: �𝐿𝐿�𝑥𝑥  ,𝐿𝐿�𝑦𝑦� = 𝑖𝑖ℏ𝐿𝐿�𝑧𝑧; �𝐿𝐿�𝑦𝑦 ,𝐿𝐿�𝑧𝑧� = 𝑖𝑖ℏ𝐿𝐿�𝑥𝑥; �𝐿𝐿�𝑧𝑧  ,𝐿𝐿�𝑥𝑥� =
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𝑖𝑖ℏ𝐿𝐿�𝑦𝑦.  This leads to an uncertainty relation for the components: 𝜎𝜎𝐿𝐿𝑥𝑥𝜎𝜎𝐿𝐿𝑦𝑦 ≥
ℏ
2
�〈𝐿𝐿�𝑧𝑧〉� and 

cyclic permutations of 𝑥𝑥,𝑦𝑦, 𝑧𝑧.  Angular momentum squared operator  𝐿𝐿�2 = 𝐿𝐿�𝑥𝑥2 + 𝐿𝐿�𝑦𝑦2 + 𝐿𝐿�𝑧𝑧2.  
�𝐿𝐿�2 , 𝐿𝐿�𝑧𝑧� = 0.  Ladder operators 𝐿𝐿�+ = 𝐿𝐿�𝑥𝑥 + 𝑖𝑖𝐿𝐿�𝑦𝑦 and 𝐿𝐿�− = 𝐿𝐿�𝑥𝑥 − 𝑖𝑖𝐿𝐿�𝑦𝑦.   
One can show that 𝐿𝐿�2 = 𝐿𝐿�±𝐿𝐿�∓ + 𝐿𝐿�𝑧𝑧2 ∓ ℏ𝐿𝐿�𝑧𝑧.  The ladder of states associated with orbital 
angular momentum has these properties: 

1) The ladder is centered on 𝑚𝑚 = 0 (i.e. the ladder includes the value of 0 ℏ). 
2) The ladder is symmetric about 𝑚𝑚 = 0. 
3) The ladder has steps in units of ℏ. 

The corresponding differential operators for angular momentum: 𝐿𝐿�𝑥𝑥 = −𝑖𝑖ℏ �− sin𝜙𝜙 𝜕𝜕
𝜕𝜕𝜕𝜕
−

cos𝜙𝜙 cot𝜃𝜃 𝜕𝜕
𝜕𝜕𝜕𝜕
� , 𝐿𝐿�𝑦𝑦 = −𝑖𝑖ℏ �− cos𝜙𝜙 𝜕𝜕

𝜕𝜕𝜕𝜕
− sin𝜙𝜙 cot𝜃𝜃 𝜕𝜕

𝜕𝜕𝜕𝜕
�, 𝐿𝐿�𝑧𝑧 = −𝑖𝑖ℏ 𝜕𝜕

𝜕𝜕𝜕𝜕
.  𝐿𝐿�± =

±ℏ𝑒𝑒±𝑖𝑖𝑖𝑖 � 𝜕𝜕
𝜕𝜕𝜕𝜕

± 𝑖𝑖 cot𝜃𝜃 𝜕𝜕
𝜕𝜕𝜕𝜕
�;  𝐿𝐿�2 = −ℏ2 � 1

sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕
�sin𝜃𝜃 𝜕𝜕

𝜕𝜕𝜕𝜕
� + 1

sin2 𝜃𝜃
𝜕𝜕2

𝜕𝜕𝜙𝜙2
�   

The Hydrogen atom wave functions as simultaneous eigenfunctions of the Hamiltonian 
and two angular momentum operators: ℋ�𝜓𝜓𝑛𝑛ℓ𝑚𝑚(𝑟𝑟,𝜃𝜃,𝜙𝜙) = 𝐸𝐸𝑛𝑛𝜓𝜓𝑛𝑛ℓ𝑚𝑚(𝑟𝑟, 𝜃𝜃,𝜙𝜙), 
𝐿𝐿�2𝜓𝜓𝑛𝑛ℓ𝑚𝑚(𝑟𝑟, 𝜃𝜃,𝜙𝜙) = ℓ(ℓ + 1)ℏ2𝜓𝜓𝑛𝑛ℓ𝑚𝑚(𝑟𝑟,𝜃𝜃,𝜙𝜙), 𝐿𝐿�𝑧𝑧𝜓𝜓𝑛𝑛ℓ𝑚𝑚(𝑟𝑟,𝜃𝜃,𝜙𝜙) = 𝑚𝑚ℏ 𝜓𝜓𝑛𝑛ℓ𝑚𝑚(𝑟𝑟,𝜃𝜃,𝜙𝜙) 
Spin Angular Momentum: Spin-1/2: a “two-valudeness not describable classically.”  
We adopt the same kets and operators as those developed for orbital angular momentum: 
𝑆̂𝑆2|𝑠𝑠,𝑚𝑚𝑠𝑠� = 𝑠𝑠(𝑠𝑠 + 1)ℏ2|𝑠𝑠,𝑚𝑚𝑠𝑠⟩, and 𝑆̂𝑆𝑧𝑧|𝑠𝑠,𝑚𝑚𝑠𝑠� = 𝑚𝑚𝑠𝑠ℏ|𝑠𝑠,𝑚𝑚𝑠𝑠⟩.  �𝑆̂𝑆𝑥𝑥 , 𝑆̂𝑆𝑦𝑦� = 𝑖𝑖ℏ𝑆̂𝑆𝑧𝑧, and all 
cyclic permutations.  There is an associated ladder of states with properties: 

1) The ladder is symmetric about 𝑚𝑚𝑠𝑠 = 0. 
2) The ladder has steps in units of ℏ. 

Note that there are total of 2𝑠𝑠 + 1 steps in the ladder.   
Spin raising and lowering operators: 𝑆̂𝑆± = 𝑆̂𝑆𝑥𝑥 ± 𝑖𝑖𝑆̂𝑆𝑦𝑦, and 𝑆̂𝑆±|𝑠𝑠,𝑚𝑚𝑠𝑠⟩ =
ℏ�𝑠𝑠(𝑠𝑠 + 1) −𝑚𝑚𝑠𝑠(𝑚𝑚𝑠𝑠 ± 1) |𝑠𝑠,𝑚𝑚𝑠𝑠 ± 1⟩.   

Spin-1/2: Two-dimensional Hilbert space |Ψ⟩ = 𝛼𝛼| 1
2

, + 1
2
� + 𝛽𝛽 | 1

2
,− 1

2
�, or going over to 

a column vector description, |Ψ⟩ = 𝛼𝛼 �1
0�+ 𝛽𝛽 �0

1�.  𝑆̂𝑆2 = 3
4
ℏ2 �1 0

0 1�, 𝑆̂𝑆𝑧𝑧 =
ℏ
2
�1 0

0 −1� = ℏ
2
𝜎𝜎𝑧𝑧, 𝑆̂𝑆+ = ℏ �0 1

0 0� and 𝑆̂𝑆− = ℏ �0 0
1 0� , 𝑆̂𝑆𝑥𝑥 = ℏ

2
�0 1

1 0� = ℏ
2
𝜎𝜎𝑥𝑥, 𝑆̂𝑆𝑦𝑦 =

ℏ
2
�0 −𝑖𝑖
𝑖𝑖 0 � = ℏ

2
𝜎𝜎𝑦𝑦.   

The Pauli Spin Matrices square to the unit matrix: 𝜎𝜎𝑥𝑥2 = 𝜎𝜎𝑦𝑦2 = 𝜎𝜎𝑧𝑧2 = �1 0
0 1�.   

Pauli spin matrices obey the commutation relations like the spin components, namely 
�𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦� = 𝑖𝑖2𝜎𝜎𝑧𝑧, and cyclic permutations.  The two eigenvalues are 𝜆𝜆1 = +1, and 𝜆𝜆2 =
−1 for all of the Pauli spin matrices.  
The “up” eigenvector for the 𝑆̂𝑆𝑥𝑥 operator, expressed in the “𝑆̂𝑆𝑧𝑧 basis”: (𝜒𝜒+)𝑥𝑥 =
1
√2
��1

0� + �0
1��.   

Spin in a magnetic field.  The spin of a charged particle has a magnetic moment 
associated with it: 𝜇⃗𝜇 = 𝛾𝛾𝑆𝑆, where 𝛾𝛾 is called the gyromagnetic ratio.  Spin in a magnetic 
field: ℋ = −𝜇⃗𝜇 ∙ 𝐵𝐵�⃗ .  For 𝐵𝐵�⃗ = 𝐵𝐵0𝑧̂𝑧, ℋ� = −𝛾𝛾𝑆̂𝑆𝑧𝑧𝐵𝐵0 and the matrix form of this Hamiltonian 
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is ℋ� = −𝛾𝛾𝐵𝐵0
ℏ
2
�1 0

0 −1�.  TISE energy eigenvalues 𝐸𝐸∓ = ±𝛾𝛾𝐵𝐵0
ℏ
2
.  The corresponding 

eigenvectors are 𝜒𝜒+ = �1
0� and 𝜒𝜒− = �0

1�, so we use “+” to refer to the “up” spin which 

is aligned with 𝐵𝐵�⃗  and therefore has lower energy 𝐸𝐸+ = −𝛾𝛾𝐵𝐵0
ℏ
2
.  Time dependent 

Schrodinger equation for the spinor wavefunction: 𝑖𝑖ℏ 𝜕𝜕𝜒𝜒
𝜕𝜕𝜕𝜕

= ℋ�𝜒𝜒. Time evolution of the 

spinor wavefunction: 𝜒𝜒(𝑡𝑡) = � cos(𝛼𝛼/2) 𝑒𝑒𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡/2

sin(𝛼𝛼/2) 𝑒𝑒−𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡/2�.   An additional perpendicular rf 

magnetic field acts as a perturbation and can cause a transition of the spin to the higher 
energy state (ESR, NMR): ℋ�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −𝛾𝛾𝑆̂𝑆 ∙ 𝐵𝐵�⃗ 𝑟𝑟𝑟𝑟 cos�𝜔𝜔𝑟𝑟𝑟𝑟𝑡𝑡�.   

Combining two spins: 𝑆𝑆 = 𝑆𝑆1 + 𝑆𝑆2.  𝑆𝑆𝑧𝑧 = 𝑆𝑆1𝑧𝑧 + 𝑆𝑆2𝑧𝑧.  𝑆𝑆2 = �𝑆𝑆1 + 𝑆𝑆2�
2

= 𝑆𝑆12 + 𝑆𝑆22 +
2𝑆𝑆1 ∙ 𝑆𝑆2.  Two spin-1/2 creates two ladders of states.  First the s = 1 ladder of 3 states.  

TRIPLET ↑↑=11 , ( )↓↑+↑↓=
2

101 , and ↓↓=−11 .  And the s 

= 0 ladder of 1 state.  SINGLET ( )↓↑−↑↓=
2

100 .  The states |1 1⟩,  |0 0⟩, 

etc. are in the ‘coupled representation’, while the states | ↑⟩| ↓⟩, etc. are in the ‘un-
coupled’ representation. 
Combining general spins: 𝐽𝐽 = 𝐽𝐽1 + 𝐽𝐽2, this sum spin has possible quantum numbers 𝑗𝑗 
ranging from {𝑗𝑗1 + 𝑗𝑗2, 𝑗𝑗1 + 𝑗𝑗2 − 1, … , |𝑗𝑗1 − 𝑗𝑗2|}.  Each of these 𝑗𝑗 values is a ladder of 
states with 2𝑗𝑗 + 1 rungs each. 
 
Observation: For the Hermite, Legendre and Laguerre polynomials: all required that a 
parameter in the corresponding differential equation take on an integer value in order to 
terminate an infinite series which would otherwise diverge and give a non-normalizable 
wavefunction. 
 
So …. What is important? 
 Understanding the motivation for a wave theory of matter 

 The Bohr model of the hydrogen atom – a good starting point! 

 Solving the TISE quickly and efficiently and accurately 

  Stationary states vs. full time-dependent solutions to the TDSE 

 Operators and how to form their expectation values {momentum, kinetic energy,  

  Hamiltonian, raising and lowering, angular momentum, …} 

 Properties of the ubiquitous QM problems:  

Infinite Square Well, Harmonic Oscillator, Free Particle, Finite square 

well, Dirac delta function well, scattering problems, radial equation with various 

choices for 𝑉𝑉(𝑟𝑟) 
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   Energy values, wavefunctions, orthonormality, quantum numbers 

and their possible values and constraints, degeneracies 

 Being able to sketch wavefunctions for new potentials using intuition about the 

properties of the wavefunction in one dimension 

Copenhagen Interpretation of Quantum mechanics.  All that we know about a 
quantum system is given by its wavefunction.  There are no hidden variables or 
additional degrees of freedom, or trajectories, etc.  A measurement collapses the 
wavefunction into an eigenstate of the operator representing the observable quantity. 

 
Matrix mechanics – heavy use of linear algebra (see Appendix A) 
Hilbert space generalization of QM (the natural setting for ang. mom. and spins!) 
Bras and Kets representing quantum states and Matrix Elements representing 

operators  
Utilizing orthonormal bases to represent arbitrary states 
Evaluating commutators, recognizing incompatible operators, constructing 

uncertainty relations 
Understanding that quantum states exist in Hilbert space, and can be projected 

into a number of different representations, as needed 
 
Structure and properties of the Hydrogen atom 
 Angular and Radial equation solutions 
 This is the basis for atomic physics and understanding the periodic table 
Spin Angular Momentum is the paradigm of “simple” quantum systems that live in 
Hilbert space 
 It is the basis for quantum bits (qubits) 
 
Phys 401 has presented a series of exactly solvable QM problems 
Phys 402 develops approximation methods to do with more realistic QM problems 


